18 Jan 2018, 08:20

Google S2 with Python & Jupyter

Google is working again on S2 a spatial library !!!

And they even have created a website to communicate about it s2geometry.

The C++ port contains a Python Swig interface.

I’ve been using an unofficial Python port with Jupyter for years now things are way more simpler.

If you are on Arch I’ve create a package, simply install AUR s2geometry-git

First we want a clean Jupyter install from scratch:

virtualenv3 ~/dev/venv3
source ~/dev/venv3/bin/activate
pip install jupyter
pip install cython
pip install numpy
pip install matplotlib scikit-learn scipy Shapely folium geojson Cartopy
cp /usr/lib/python3.6/site-packages/_pywraps2.so $VIRTUAL_ENV/lib/python3.6/site-packages      
cp /usr/lib/python3.6/site-packages/pywraps2.py $VIRTUAL_ENV/lib/python3.6/site-packages

Here is a simple test map.

import folium
import pywraps2 as s2

# create a rect in s2
region_rect = s2.S2LatLngRect(
        s2.S2LatLng.FromDegrees(48.831776, 2.222639),
        s2.S2LatLng.FromDegrees(48.902839, 2.406))

# ask s2 to create a cover of this rect
coverer = s2.S2RegionCoverer()
covering = coverer.GetCovering(region_rect)
print([c.ToToken() for c in covering])

# create a map
map_osm = folium.Map(location=[48.86, 2.3],zoom_start=12, tiles='Stamen Toner')

# get vertices from rect to draw them on map
rect_vertices = []
for i in [0, 1, 2, 3, 0]:
    vertex = region_rect.GetVertex(i)
    rect_vertices.append([vertex.lat().degrees(), vertex.lng().degrees()])
# draw the cells
style_function = lambda x: {'weight': 1, 'fillColor':'#eea500'}
for cellid in covering:
    cell = s2.S2Cell(cellid)
    vertices = []
    for i in range(0, 4):
        vertex = cell.GetVertex(i)
        latlng = s2.S2LatLng(vertex)
    gj = folium.GeoJson({ "type": "Polygon", "coordinates": [vertices]}, style_function=style_function)
# warning PolyLine is lat,lng based while GeoJSON is not
ls = folium.PolyLine(rect_vertices, color='red', weight=2)

And here is the resulting Jupyter notebook

08 Oct 2017, 14:28

Hacking Temperature Radio Sensors and Graphing with Prometheus

One year ago I’ve started to collect temperature from my house using Acurite sensors.

Acurite outddor Acurite indoor

These sensors are not too expensive and good quality but the “base” aka the radio receiver connected to internet is costly and totally closed, it’s sending your data to the Cloud™, it’s not just Acurite, all those “IOT” devices are generally poor on the software side.

Receiving radio data

Most of these sensors have their protocols already reverse engineered you only need the radio receiver part.

RTL-SDR dongles to the rescue and a great community around it.

Prune998 and I have added some JSON support to the acurite driver and sent it to the projet.

Collecting and graphing the data

The last needed piece was something to collect the data and send to prometheus:

So I wrote a quick Go program to do exactly that Acurite to graph

Et voila, we can graph all sensors in our home.


It has been tested on OSX & Linux.

08 Oct 2017, 09:57

Notes on PacBSD

PacBSD is a FreeBSD kernel/world with a PacMan Arch package manager and an optionnal OpenRC init system.

In short ZFS, DTrace and the FreeBSD kernel but the simplicity of Arch for packages management but the Gentoo init.

It’s experimental, uncompleted, unfinished, lacks proper documentations but it works and could be/should be the solution we are waiting for :).

Here is some notes on installation (in QEMU), note that it slightly diverges from the official install since it’s using a whole ZFS disk, so no GPT.

zpool create tank /dev/vtbd0
zfs create -o canmount=off -o mountpoint=legacy tank/ROOT
zfs create -o canmount=on -o compression=lz4 -o mountpoint=/ tank/ROOT/pacbsd
zfs create -o compression=lz4 -o mountpoint=/home tank/HOME
zfs create -o compression=lz4 -o mountpoint=/root tank/HOME/root
pacstrap /mnt base

Add to loader.conf

arch-chroot /mnt
ln -s /usr/share/zoneinfo/zone/subzone /etc/localtime
rc-update add zfs default
echo 'hostname="pacbsd"' > /etc/conf.d/hostname
dd if=/boot/zfsboot of=/dev/vtbd0 count=1
dd if=/boot/zfsboot of=/dev/vtbd0 iseek=1 oseek=1024

Edit loader.conf


Reboot, manually starts dhcpd, explore …

dhcpcd vtnet0

Even with you don’t plan on installing PacBSD, the provided ISO is a useful bootable FreeBSD 11 kernel with zfs and pacman/pacstrap tools.

22 Jul 2017, 21:28

Arch Linux on a Chromebook Asus C301SA

I’ve got an Asus C301S at work, it’s a Chromebook with Chromeos.

I like those little laptops, for the price it’s actually a very good little machine.
ChromeOS is responding very well, ssh and Chrome are working too.
But I often need more, like X11 forwarding or offline coding …

You will see the C301SA is marked as a C300SA internally.

Here are the steps to install Arch Linux on it, do it at your own risk, you can brick your computer, you will need an external USB keyboard.

  • Activate the recovery mode, by using ESC + F3 (refresh) and the power key

  • Activate the developer mode with ctrl + d, confirm you want to continue, it will take a long time before it’s finished preparing the developer mode.

  • Shutdown and remove the write protection screw
    It’s actually written as not mandatory but also “could be dangerous”, didn’t take the chance.
    Gently dismount the keyboard (by removing the back screws), warning the screws are different, so remember their positions.
    Locate the write protection screw, mine was covered with a black tape, (on the left close to the USB port) and remove it
    c301 screw

  • Reboot into ChromeOS by pressing ctrl + d

  • Patch the firmware [Ctrl+Alt+T] to get a ChromeOS terminal
    type or copy paste cd; curl -LO https://mrchromebox.tech/firmware-util.sh && sudo bash firmware-util.sh
    Choose 1 to enable legacy boot then n to boot from internal then shutdown the computer.

  • Create a bootable USB key for Arch Linux
    sudo dd if=/home/akh/Downloads/archlinux-2017.06.01-x86_64.iso of=/dev/sde bs=512

  • Boot on Arch by pressing ctrl + l then ctrl + u, sometimes it fails

  • The actual Arch kernel does not see the keyboard … you’ll need an external USB keyboard.

  • Perform a normal installation of Arch (I’ve totally removed ChromeOS partitions) and even performed an MBR install (instead of GPT) with only 2 partitions.
    The internal SSD disk is /dev/mmcblk0

  • Install grub
    grub-install --target=i386-pc /dev/mmcblk0
    grub-mkconfig -o /boot/grub/grub.cfg

  • Install yaourt

git clone https://aur.archlinux.org/package-query.git
cd package-query
makepkg -si
cd ..
git clone https://aur.archlinux.org/yaourt.git
cd yaourt
makepkg -si
cd ..
  • Install the galliumos patched kernel, you can go to bed coz it will take a long time to compile
    yaourt --tmp /var/tmp -S aur/linux-galliumos-braswell

The keyboard should work now.
Also install or grab the config file from aur/galliumos-braswell-config for audio support.

If it won’t boot don’t worry you can still boot using the Arch USB key, then remount your system:

mount /dev/mmcblk0p1 /mnt
arch-chroot /mnt

Touch pad config:

Section "InputClass"
    Identifier "Elan Touchpad"
    Driver "libinput"
    MatchIsTouchpad "on"
    Option "Tapping" "on"
    Option "NaturalScrolling" "true"  
    Option "ClickMethod" "clickfinger"

Congratulations you have a fully working computer.

EDIT: Arch kernel 4.12 is fully working without the need to use aur/linux-galliumos-braswell, but 4.13 breaks this support, so keep 4.12 for now.

25 Feb 2017, 09:57

From OSX to Linux

I’ve been a long time UNIX user, ditched Microsoft back in the 90s for FreeBSD, Solaris and Linux on the desktop, but when Apple released MacOS X, I’ve used it as a workstation.

For the last years I’ve used Linux desktops but not on my main computer, today here I am switching back to Linux.

This post is not about the reasons I’m switching, they are simple.
My typical work day is mostly about parsing giant files, running VM and Dockers, coding in Go and not about developing for iOS anymore.

I’m using Arch Linux and KDE/Plasma but many items from this list apply to any Linux distributions.

Put your user in the following groups uucp audio input lp.

Bonjour, mDNS and .local

I was used to query the .local domain to ssh my laptop back.

  • Install nss-mdns, add mdns_minimal [NOTFOUND=return] before resolve in /etc/nsswith.conf
  • Install avahi and start avahi-daemon.service.
  • To make your ssh server visible to others, cp /usr/share/doc/avahi/ssh.service /etc/avahi/services/

Try pinging a Mac host on your LAN with ping hostname.local

Google drive

Install kio-gdrive then start Dolphin and go to Network then Google drive and set up your account or by running the shell command: kioclient5 exec gdrive:/.

Emojis in color 💻

Install noto-fonts-emoji and edit .config/fontconfig/fonts.conf as follow

<?xml version='1.0'?>
<!DOCTYPE fontconfig SYSTEM 'fonts.dtd'>

This setup is working in most applications but can sometimes display weird results in terminals.

2 Factor USB key U2F

I have a cheap Fido U2F key but Chrome was unable to see it. Edit /etc/udev/rules.d/50-fido-u2f.rules

# this udev file should be used with udev 188 and newer
ACTION!="add|change", GOTO="u2f_end"
KERNEL=="hidraw*", SUBSYSTEM=="hidraw", ATTRS{idVendor}=="096e", ATTRS{idProduct}=="0850|0880", TAG+="uaccess"

Win key aka ⌘ cmd key

On a PC keyboard the left alt and the windows key are inverted in opposite to a Mac where alt is left of ⌘.
To avoid being lost when I switch back to my Macbook I’ve physically inverted the keys and change the behavior in Plasma in “Hardware | Input Devices”.


Compose key

To type special or accentuated characters you’ll use the “Compose” key.
You can set the compose key in Plasma in “Hardware | Input Devices”.


I’m using the right alt, which is the right ⌘ cmd on a Mac (and also a compose key).

For a complete list of compose shortcuts see the bottom of this page


The tool/window equivalent to running Spotlight is called “Plasma Search”, you can configure what it can search for.
The mapping for this key in “System Settings | Global Shortcuts | Run Command”.

System Settings | Global Shortcuts | Run Command

It’s also capable of indexing files content, in KDE/Plasma this service is provided by baloo, ignored directories can be set by calling “Configure File Search”.

You can empty your baloo index by stopping by killing all your baloo processes and rm -r .local/share/baloo then restart for indexation balooctl start

Exposé and active corners

It’s called “Screen Edges” and it’s under “Windows behavior”.


Alternative for Dash

Dash was part of my workflow to get documentation, an alternative solution is to install zeal it’s using the exact same docsets as Dash.
Also see DevDocs

Samba share

Install samba, tweak /etc/samba/smb.conf and enable nmbd.service.
I personally prefer a different password than my shell account: smpasswd -a yourusername.

Taking Screenshot

Install spectacle and use the Ptr Sc key (this shortcut can be setup in Plasma).

Webcam, Hangout and Skype

I have a Logitech C920, it worked without any configuration, inside Chrome so Hangout and even with Skype for Linux.

Mounting a macOS disk

That one is weird …
mount -o ro,sizelimit=498876809216 /dev/sda2 /mnt/OSX

If your existing partition was big, you need to find this magic number by following this guide


Steam needs x86 32 bits libraries, on Arch you have to enable multilib by editing /etc/pacman.conf

Include = /etc/pacman.d/mirrorlist

Then install the steam package.

Virtualbox / QEMU

I prefer QEMU/KVM & libvirt-manager, when available, over Virtualbox, it’s more integrated into the system, and it’s capable of emulating other cpu architectures like aarch64…

One more huge advantage for QEMU it’s also capable of booting a virtual macOS X


Install cups and print-manager then enable org.cups.cupsd.service, note that you need the .local resolution above for network printer resolution.
Also install hplib for HP printers.

Share your session aka remote desktop

Install x11vnc and run x11vnc -usepw -once -noxdamage -ncache 10 from your X session.

Note that this vnc server is not compatible with macOS X embedded vnc viewer (vnc://hostname), here is one for Chrome RealVNC

Remember vnc protocol is not secure and you must use an SSH tunnel over it.

Magic Trackpad

I’m using a magic trackpad 2, after enabling bluetooth and pairing the trackpad, one, two & three fingers touches, vertical & horizontal scroll worked via hid_magicmouse module.

For gestures you need libinput-gestures, here is an example /etc/libinput-gestures.conf file:

gesture swipe left 3 xdotool key control+Right

gesture swipe right 3 xdotool key control+Left

gesture swipe up 3 xdotool key control+F9

The bad

  • Not as nice, not as well integrated, for example supporting HiDPI with only one retina screen is weird with Xorg.
  • Key shorcuts are a giant mess under Linux, every applications have their own and it can’t be configured centrally.
  • I’m still missing some applications like Sketch, but most of all Tower when dealing with a git merge issue.

The good

After 8 years of absence on Linux as main desktop, things have changed, it’s not free from bugs but way more simpler to use now than before, and way more configurable than macOS X.

It won’t work for everybody but I’m really happy with this setup, the gain compared to a Mac is big, first the machine itself a 4Ghz i7 with 64G of ram does not even exist at Apple (Hackintosh is not a good solution), ZFS, native Docker over ZFS, better OpenGL (faster fps in games), well maintained packages over Brew/Macports, well maintained drivers, my work is easier …


20 Oct 2016, 08:58

Telegraf & Prometheus Swiss Army Knife for Metrics

There are a lot of different solutions when it comes to collecting metrics, I found myself happy with this hybrid solution.

Telegraf is an agent written in Go for collecting metrics from the system it’s running on.
It’s developed by Influxdata the people behind InfluxDB, but Telegraf has a lot of outputs plugins and can be used without InfluxDB.
Many different platform (FreeBSD, Linux, x86, Arm …) are offered and only one single static binary (Thanks to Golang) is needed to deploy an agent.

Prometheus is a time series database for your metrics, with an efficient storage.
It’s easy to deploy, no external dependencies, it’s gaining traction in the community because it’s a complete solution, for example capable of discovering your targets inside a Kubernete cluster.

Here is a simple configuration to discover both products.

You can deploy the agent on every hosts you want to monitor but need only one Prometheus running.

Install Prometheus

Download Prometheus for your platform and edit a config file named prometheus.yml.

  - job_name: 'telegraf'
    scrape_interval: 10s
      - targets: ['mynode:9126']

Prometheus is a special beast in the monitoring world, the agents are not connecting to the server, it’s the opposite the server is scrapping the agents.
In this config we are creating a job called telegraf to be scrapped every 10s connecting to mynode host on port 9126.

That’s all you need to run a Prometheus server, start it by specifying a path to store the metrics and the path of the config file:

prometheus -storage.local.path /opt/local/var/prometheus -config.file prometheus.yml

The server will listen on port 9090 for the HTTP console.

Install Telegraf

Download Telegraf agent for your platform and edit telegraf.conf.

    listen = ""

# Read metrics about cpu usage
  ## Whether to report per-cpu stats or not
  percpu = true
  ## Whether to report total system cpu stats or not
  totalcpu = true
  ## If true, collect raw CPU time metrics.
  collect_cpu_time = false

# Read metrics about memory usage

# Read metrics about network interface usage
  ## By default, telegraf gathers stats from any up interface (excluding loopback)
  ## Setting interfaces will tell it to gather these explicit interfaces,
  ## regardless of status.
  interfaces = ["en2"]

Remember this is the node agent “client” but since Prometheus server will connect it, you are providing a listening endpoint.
Starts the agent with telegraf -config telegraf.conf

There are many more inputs plugins for telegraf for example you can monitor all your Docker instance.

# Read metrics about docker containers
  endpoint = "unix:///var/run/docker.sock"
  ## Only collect metrics for these containers, collect all if empty
  container_names = []
  ## Timeout for docker list, info, and stats commands
  timeout = "5s"

  ## Whether to report for each container per-device blkio (8:0, 8:1...) and
  ## network (eth0, eth1, ...) stats or not
  perdevice = false
  ## Whether to report for each container total blkio and network stats or not
  total = false

It’s also capable of monitoring third parties product like MySQL, Cassandra

Read Metrics

Prometheus is provided with a visual HTTP console & query tool available on port 9090.

The query language is described here.

The console can’t be really used as a dashboard, you can use Grafana which can speak directly to prometheus.

Install or run Grafana with docker

docker run -i -p 3000:3000 -e "GF_SECURITY_ADMIN_PASSWORD=mypassword"  grafana/grafana

Point your browser to the port 3000.
Add a Prometheus data source and point the host to your Prometheus server port 9090.

Then create your dashboard, here are some queries to display the telegraf agents:

  • CPU
    cpu_usage_idle{host="myhost", cpu="cpu-total"}
    cpu_usage_user{host="myhost", cpu="cpu-total"}
    cpu_usage_system{host="myhost", cpu="cpu-total"}

  • Memory

  • Docker Memory
    Legend format {{container_name}}

  • Docker CPU
    Legend format {{container_name}}

Graph prometheus


You can easily instrument your own development using the client libraries.
There is also a Prometheus gateway for the short lived jobs, so you can batch to the gateway between the scrap period.

It’s a simple setup but capable of handling a lot of data in different contexts, system monitoring & instrumentation.

28 Sep 2016, 13:15

gRPC wrong types context and Go 1.7

If you are following Go development you probably know that:
Go 1.7 moves the golang.org/x/net/context package into the standard library as context, Yeah !
Unfortunately it won’t work for everything, I’ve spent some time understanding this one.

For example if you are using gRPC you can hit this problem, here is an interface generated by gRPC:

type APRSServer interface {
    GetPastMessages(context.Context, *Point) (*ARPSMessages, error)

But when compiling:

/main.go:153: cannot use &s (type *Server) as type protorpc.APRSServer in argument to protorpc.RegisterAPRSServer:                                                                           
        *Server does not implement protorpc.APRSServer (wrong type for GetPastMessages method)                                                                                                
                have GetPastMessages("context".Context, *protorpc.Point) (*protorpc.ARPSMessages, error)                                                                                      
                want GetPastMessages("golang.org/x/net/context".Context, *protorpc.Point) (*protorpc.ARPSMessages, error)   

The compiler is complaining about wrong types for the context argument.
Problem is gRPC generated code is importing context as golang.org/x/net/context, that’s the only way it remains compatible between Go 1.6 & Go 1.7.

So a quick solution is to import context in your own code to use the old path:

// we have to use the old context path here for gRPC compat see https://github.com/grpc/grpc-go/issues/711
context "golang.org/x/net/context"

Also note that go tool fix is now capable of fixing the import path with -force context.

22 Sep 2016, 15:39

Using Go mobile on iOS for real

Go Mobile can generate native framework for iOS and Android using Go code, I was curious what could be achieved with it.
Most tutorials are Hello world and I wanted to test it with real code.
You can use it to generate a full app only using Go code, but I’m only interested by the bindings part (SDK applications), using a native ObjC/Swift app calling Go code.

I’m using some existing Go code regionagogo, (a geofence database), moderately complex since it uses BoltDB and Google S2 library.

Go Mobile is limited to a subset of types you can use, main reason is to be correctly transcribed to Java and ObjC.

So the first thing to do is to write some Go wrapper like you would do in ObjC to call some C++ code but first:

Functions must return either no results, one result, or two results where the type of the second is the built-in error type.
So far no major complication, but also note that you can’t return slices, that could be a major pain, there are some workaround solutions like go-mobile-collection that can generate an API to operate on slice.
You also have to respect some naming for your constructor like New...().

At the end your wrapper won’t look very Goish but it’s what it takes for it to be translated.

Knowing those constraints you can write a simple wrapper like this:

package mobile

type GeoDB struct {
	db regionagogo.GeoFenceDB

func NewGeoDB() *GeoDB {
	g := &GeoDB{}
	return g

func (g *GeoDB) OpenDB(path string) error {
	db, err := rbolt.NewGeoFenceBoltDB(path)
	if err != nil {
		return err
	g.db = db
	return nil


Then use the gomobile command:

gomobile bind -target=ios github.com/akhenakh/regionagogo/mobile

It generates a native iOS Mobile.Framework, drop it into your XCode project and start using it.

  • GeoDB translates to GoMobileNewGeoDB() and returns a GoMobileGeoDB* in ObjC domain.
  • OpenDB(path string) error to - (BOOL)openDB:(NSString*)path error:(NSError**)error.

A simple example would be:

GoMobileGeoDB *db = GoMobileNewGeoDB();
NSString *resourcePath = [[NSBundle mainBundle] pathForResource:@"region" ofType:@"db"];
NSError *error;
[db openDB:resourcePath error:&error];
if (error != nil) {
    NSLog(@"error opening db %@", [error localizedDescription]);

It’s performing very well, on my iPhone 6, around 4,000 queries per second to test a position in a small fence, to 60,000 queries in a hit miss (calling Go overhead is not that big), while using a ridiculously small amount of memory.

I’ve made a demo iOS app where you can hit the map and it tells you in which fence you are.

Remember this is running locally on your phone without any network access (but the map), the geo computation and the Polygons are returned by Go code.

Until now I had to maintain libraries in both languages, Go mobile is a nice alternative!

Sources for the wrapper are available in regionagogo gomobile branch, and here is the iOS demo app.

20 Sep 2016, 17:40

gRPC Envoy Nghttp2 and Load Balancing

I’ve been using gRPC at work and in several personal projects for months and happy with it, but when it comes to load balancing gRPC does not come with batteries included.

For a long time the only document was the Load Balancing draft in the gRPC repo, the clients should implement a Picker interface to know about the servers, so the pooling and controling the load were handled by the clients.
HTTP/2 was new and most of the reverse proxies implementations were not capable of load balancing gRPC HTTP2 frames, the only solution was to use a TCP load balancer, generating errors, improper and weird behaviours for the clients.

At least two projects are now supporting gRPC load balancing easily.

  • The recently announced Envoy from Lyft
  • And nghttpx from nghttp2

Here are some notes to simply load balance two gRPC Helloworld server! running on ports 50050 & 50051.

  • For nghttp2, a simple configuration file will do

  • For envoy, here is the cluster part

    "clusters": [
        "name": "local_service",
        "connect_timeout_ms": 250,
        "type": "static",
        "lb_type": "least_request",
        "features": "http2",
        "hosts": [
            "url": "tcp://"
            "url": "tcp://"

You can then tweak the greeter_client to loop for requests, so you can simulate a client doing multiple requests while killing/restarting your servers.

for {  
    r, err := c.SayHello(context.Background(), &pb.HelloRequest{Name: name}) 
    if err != nil { 
        log.Printf("could not greet: %v", err)
    log.Printf("Greeting: %s", r.Message)

And modify the greeter_server to show on which port/server you get your response:

// SayHello implements helloworld.GreeterServer
func (s *server) SayHello(ctx context.Context, in *pb.HelloRequest) (*pb.HelloReply, error) {
    return &pb.HelloReply{Message: "Hello " + in.Name + port}, nil 

Those tests aren’t enabling any TLS so use grpc.WithInsecure().

Note that Envoy is also capable of bridging your HTTP/1.1 queries to gRPC, which is a killer feature (I haven’t tested it yet) , you would normally do it by code with gRPC-gateway.

Envoy is really new and I’m still digging into but already proves itself to be a complete load balancing proxy solution with or without gRPC in your stack.

22 Jul 2016, 19:11

Streaming using a Raspberry Pi Camera to Twitch in Full HD while injecting audio from rtl sdr

I have found the right setup to stream in 1080p from a Raspberry Pi using the camera to TwitchTV while injecting audio on the fly!

Create an account on Twitch and grab you stream key in the Dashboard.

This stream.sh script will create a FIFO start rtl_fm at freq 162.550M to listen to Canada weather bulletin (use your local NOAA channel) and inject and encode the audio to the existing h264 stream from the camera then stream it to twitch using rtmp.

#! /bin/bash
KEY="live_XXXXX_XXXXXXXXXXXXXX" # put your key here

mkfifo /tmp/streamaudio.wav
rtl_fm -f 162.550M -s 22050 -g 30 | sox -r 22050 -t raw -e signed -b 16 -c 1 -V1 - -r 22050 -t wavpcm  -  > /tmp/streamaudio.wav &

/opt/vc/bin/raspivid -n -vf -t 0 -w 1920 -h 1080 -fps 25 -o - | ffmpeg -re -i - -i /tmp/streamaudio.wav -codec copy -strict experimental -acodec libmp3lame -ar 22050 -threads 8 -f flv "$STREAM_URL/$KEY"

You can of course send other audio sources or no audio at all.

This setup is taking around 10% cpu on a Raspberry Pi 2.

If you are lucky enough my channel will be up and running.

What is RTL SDR ?

Using a 20$ USB dongle you have a software radio scranner, capable of listening to radio amateurs, NOAA weather bulletin even satellites.

Note that you can also stream from your laptop using the great and free ObsProject.

Happy streaming.